Radar level measurement supplier factory from China: In addition, pressure transmitter products are widely used in steel, chemical, paper, sewage treatment, water, heat, electricity, food, non-ferrous and other industries. In addition to measuring pressure, pressure transmitters can also be derived from many uses, such as the use of differential pressure transmitters to measure flow, the use of gravity of the liquid to measure the level. There is also the use of liquid level sensors. Liquid level sensor to the container level signal into a switch signal or voltage and current signal, and then through the external circuit, intuitively let the measurer accurately know the liquid level in the container. Liquid level sensor types are many and complicated, photoelectric level sensor with accurate measurement, high precision, fast response speed, advanced technology, low power consumption and other advantages in the liquid level sensor market occupies a unique advantage for liquid level measurement. Read more details on radar level transmitter suppliers.
Data Analytics – IIoT devices generate large amounts of data. Radar sensors equipped with IIoT capabilities often include built-in analytics tools that seamlessly integrate with industrial data analytics platforms. This empowers organizations to extract insights from collected data enabling informed decision making. Enhanced Connectivity – To fully participate in the IIoT ecosystem, radar sensors are equipped with versatile connectivity options such as Ethernet, Wi-Fi or cellular networks. These connectivity options ensure integration with existing control and data acquisition (SCADA) systems or cloud based platforms.
Application conditions, application conditions generally include calm liquid level, slightly fluctuating surface, turbulent surface, with stirring, with foam and so on. The more complex the conditions, the more interference echoes, and the smaller the actual measured range. In a complex environment, a precision radar with strong ability to deal with interference echoes or an antenna with a larger size should be selected.
The key components are made of high-quality materials, which have strong corrosion resistance and can adapt to highly corrosive environments. Low power consumption, can use solar power to supply power, no need to build water level wells, adapt to various geographical environments, no impact on water flow, and more convenient installation and maintenance. The parameter setting is convenient, and the false echo from the liquid surface to the antenna can be automatically identified by the software carried by itself to eliminate the interference.
For more accurate measurement in deaerators, magnetrol guided wave radar (GWR) is a preferred option. Since its performance and accuracy are not contingent on the specific gravity and/or inference, it can provide reliable measurements in all situations, including the difficult and turbulent process conditions of deaerators and feedwater heaters. In addition, GWR does not require external inputs or calibration to achieve specified performance. This effectively eliminates the introduction of errors during the calibration process or from external sources, i.e., pressure and temperature. With this high level of accuracy, operators can trust that their deaerators will be well controlled.
In addition, some silos in cement plants are very high, such as homogenizing silos of 50cm. It takes time and energy to board high silos to debug radar, so it is recommended to choose HART handheld operators that can be debugged remotely in the central control room. In the central control room, the range and other basic parameters can be set, and the radar echo waveform can be observed, and the waveform can be used for remote diagnosis and debugging, greatly reducing the on-site work intensity of the staff, to avoid the risk of climbing operation. The smart radar level gauge commonly used at present also has a function similar to “driving recorder”, that is, when the material surface mutation occurs on the scene, it can capture the radar echo waveform at that time, which is very useful for debugging the silo under complex conditions.
As one of the most professional magnetic level indicators manufacturers in China,Guangdong Kaidi Energy Technology Co., Ltd. provides customized solutions for a range of industrial automation process applications,such as mechanical float level indicator.We specialized in radar level gauge, fork type level switch,etc. These were implemented successfully, and KAIDI magnetic level gauge manufacturers products,such as radar level meter, magnetic level indicators, can be used in many different industries such as food & beverage, water, energy, pharmaceutical etc. Find even more details on kaidi86.com. Kaidi Energy is a level gauge manufacturer which more than 20 years of industrial automation experience.
The radar level gauge works by electromagnetic waves. Its working principle is to measure the specific liquid level by transmitting electromagnetic waves to the measured target. After the electromagnetic waves are emitted, they are reflected by the medium. For the radar level gauge, its key function is to ensure that it can transmit magnetrol guided wave radar signals smoothly. In our industrial production site, interference often occurs, so which interference sources will affect the measurement of the radar level gauge? let’s see.
For the continuous measurement of corrosive, high viscosity, flammable and toxic liquids, liquid-liquid interface and solid-liquid interface that are difficult to measure by ordinary liquid level meter , ultrasonic level meter should be selected, but should not be used in occasions with large liquid level fluctuations . Ultrasonic level meter are suitable for measuring media that can fully reflect and transmit sound waves, but should not be used in vacuum. The ultrasonic flow meter should not be used in process equipment where internal obstacles affect the propagation of sound waves.
There is AC interference and the voltage is high. For example, for the radar level meter used in the production line, the power supply requirement is 24VDC (typical value), but in the on-site measurement, it is found that the power supply is displayed as 27.2V, which is significantly higher than 24VDC, resulting in a large measurement result and even a radar level meter. crash phenomenon. The installation position of the radar level meter is incorrect, which leads to deviations in the measurement. For example, the accumulation of aggregates in the transfer bin is a “mountain”-shaped cone, but only one radar level meter is installed near the discharge port of the return belt. , the installation position is too close to the discharge opening of the return belt, and at the same time, it is too far from the discharge opening of the feeding belt on both sides. Just below the radar level meter is the drop point of the return belt. If the distance is too close, the aggregate in the falling process will interfere with the radar level meter and form false reflections.